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In this paper, we investigate the effect of basic-flow modification on the absolute
instability in a two-dimensional wake at low Reynolds number with the parallel-flow
approximation. Using the method of calculus of variation, we investigate how to
modify the basic flow to suppress or enhance the absolute instability and suggest
an optimal modification of the basic flow for stabilizing a bluff-body wake. In
order to validate the present approach, we also measure the sensitivity of all the
eigenvalues including the absolute-instability frequency, using the ε-pseudo-spectrum,
showing that small modifications in the basic flow do not destabilize other eigenvalues
by more than the original absolute-instability frequency, at least for the Reynolds
number considered here. For a two-dimensional parallel model wake and a circular-
cylinder wake, the present approach shows that the positive and negative velocity
perturbations to the basic flows, respectively, at the wake centreline and separating
shear layer suppress the absolute instability.

1. Introduction
The concept of absolute and convective instabilities originally developed from

plasma physics (Briggs 1964) has provided important findings on the onset of vortex
shedding in the wake behind a bluff body (Huerre & Monkewitz 1990; Chomaz 2005).
In a bluff-body wake, the basic flow (i.e. steady unstable solution) undergoes changes
in the nature of the local instability along the streamwise direction: the flow exhibits
absolute instability in the near wake, whereas its nature is convectively unstable or
linearly stable in the far wake.

The relation between this spatially developing instability property and the dynamics
of global oscillation was subsequently investigated. In theoretical studies based on
the WKBJ approximation (Chomaz, Huerre & Redekopp 1988, 1991; Monkewitz,
Huerre & Chomaz 1993), it was shown that a finite region of local absolute instability
is necessary for the onset of temporally growing linear instability, so-called linear
global instability. In a bluff-body wake, this linear global instability is triggered when
the Reynolds number exceeds a critical value (Zebib 1987; Jackson 1987). In this
situation, the Hopf bifurcation occurs, and the instability wave is temporally amplified
and eventually saturates to a limit-cycle oscillation, so-called vortex shedding. This
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has been validated by experiments of Mathis, Provansal & Boyer (1984), Provansal,
Mathis & Boyer (1987) and Schumm, Berger & Mankewitz (1994).

Recently, fully nonlinear aspects of vortex shedding have also been investigated
by front propagation. In a wake, the velocity of the front determining the nonlinear
characteristics of vortex shedding (e.g. threshold and frequency selection in the fully
nonlinear sense) is determined by linear instability properties. Therefore, the local
linear instability property of the basic flow is important even in the nonlinear dynamics
of vortex shedding. For more details, refer to Chomaz (2005), which extensively reviews
the recent progress on nonlinearity and non-normality of global instability.

The control of vortex shedding has been one of the central research issues
in bluff-body wakes because vortex shedding has significant effects on the flow
characteristics of such wakes. So far, many passive and active methods have been
suggested for suppressing vortex shedding. Examples are base bleed (Wood 1964;
Bearman 1967), base suction (Hammond & Redekopp 1997; Leu & Ho 2000),
splitter plate (Roshko 1955; Kwon & Choi 1996), secondary cylinder (Strykowski &
Sreenivasan 1990), periodic rotation of the cylinder (Tokumaru & Dimotakis 1991;
Choi, Choi & Kang 2002; Protas & Wesfreid 2002; Protas & Styczek 2002), linear
proportional control (Roussopoulos 1993; Park, Ladd & Hendricks 1994), suboptimal
control (Min & Choi 1999), distributed forcing (Kim et al. 2004; Kim & Choi 2005),
small-sized tab (Park et al. 2006) and so on. These successful control methods have
been developed based on physical intuition and/or systematic control theory.

The success of some control methods has been explained in terms of the change
in the absolute instability in the near wake. For example, base bleed eliminates
or weakens the absolute instability in the near wake and eventually suppresses
vortex shedding (Monkewitz 1988). In the case of base suction having sufficiently
large amplitude, the effective region of absolute instability shrinks due to increased
non-parallelism in the near wake, thus vortex shedding is stabilized (Hammond &
Redekopp 1997; Leu & Ho 2000). The role of a small secondary cylinder placed
in the near wake to suppress vortex shedding is also conjectured to be associated
with a change in the absolute instability (Strykowski & Sreenivasan 1990; Schumm
et al. 1994). These studies have shown that the control methods such as the base
bleed, base suction and secondary cylinder modify the basic flow in the wake and
these basic-flow modifications stabilize vortex shedding by weakening the absolute
instability in the near wake.

To clearly understand the effect of basic-flow modification on the absolute
instability, a more systematic approach based on mathematical control theory
needs to be developed. Then, the inverse problem such as ‘what kind of basic-flow
modification weakens or enhances the absolute instability in a bluff-body wake’ can
be systematically solved. Therefore, in the present study, we examine the sensitivity
of absolute-instability frequency with respect to basic-flow modification using the
method of calculus of variation under the assumption of parallel flow, and derive
the optimal basic-flow modification stabilizing bluff-body wake. Finally, we apply the
present approach to a parallel model wake and a circular-cylinder wake, and show
how basic-flow modifications change the absolute instability.

2. Sensitivity of the absolute-instability frequency to basic-flow modification
In order to calculate the first variation of absolute-instability frequency with respect

to the modification of basic flow, we consider the following Orr–Sommerfeld equation
that describes the dispersion relation of parallel flow:

−iωMψ + Losψ = 0, (2.1a)
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with boundary conditions

ψ |∂Ω = Dψ |∂Ω = 0, (2.1b)

where

M = α2 − D2, (2.1c)

Los = iαU (α2 − D2) + iαD2U +
1

Re
(α2 − D2)2. (2.1d)

Here, ψ is the stream function of velocity perturbation, α the streamwise wavenumber,
ω the frequency, U = U (y) the basic flow, D = d/dy, Ω the flow domain in the
transverse direction y, ∂Ω the boundary of Ω , and Re is the Reynolds number.

We consider small variations of the basic flow and streamwise wavenumber. Then
these variations cause changes in the temporal frequency and eigenfunction of the
Orr–Sommerfeld operator, i.e.{

U → U + εδU

α → α + εδα
⇒

{
ω → ω + εδω

ψ → ψ + εδψ,
(2.2)

where ε � 1. Using the zero group-velocity condition (∂ω/∂α|α =α0
= 0) for the absolute

instability, the first variation of absolute-instability frequency is given by

δω0 =

∫
Ω

K0(y)δU (y) dy, (2.3a)

where

K0(y) =
α0

[
α2

0ψ0(y)φ0(y) + 2Dψ0(y)Dφ0(y) + ψ0(y)D2φ0(y)
]∫

Ω

φ0Mψ0 dy

. (2.3b)

Here, an overbar denotes the complex conjugate, α0 is the absolute-instability
wavenumber, ω0 the absolute-instability frequency, and ψ0(y) and φ0(y) are the
corresponding regular and adjoint eigenfunctions, respectively. The adjoint eigen-
function is obtained by solving the adjoint equation corresponding to (2.1). K0(y)
is the sensitivity of absolute-instability frequency with respect to the modification
of the basic flow. The same formula based on the classical linear stability problem
was also obtained in Bottaro, Corbett & Luchini (2003), where, given the streamwise
wavenumber, the sensitivity of the temporal frequency to the modification of the basic
Couette flow was discussed.

As is well known from previous studies (Reddy & Henningson 1993; Trefethen
et al. 1993; Schmid & Henningson 2001), the eigenvalues of the Orr–Sommerfeld
operator are extremely sensitive to the perturbation of the operator because the
operator is non-normal. Thus, (2.3) may not be applicable to the control problem,
because other eigenvalues may be destabilized by small changes in the basic flow
by more than the original absolute-instability frequency. However, we will show
that the non-normality of the Orr–Sommerfeld operator is sufficiently moderate in a
parallel wake at low Reynolds number (see § 4.1). Therefore, the imaginary part of
K0(y), K0i

(y), plays a critical role in controlling the absolute instability. From the
information on K0i

(y) one can determine δU (y), which stabilizes or destabilizes the
flow.

3. Optimal modification of a parallel basic flow
The growth rate of the absolute instability frequency is the critical parameter for

controlling the absolute instability. Equation (2.3) shows how the absolute-instability
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frequency ω0 changes due to the modification of the parallel basic flow δU . Thus, let
us consider the following optimization problem:

min
δU

δω0i subject to

∫
Ω

δU 2(y) dy = c, (3.1a)

where

δω0i =

∫
Ω

K0i
(y)δU (y) dy. (3.1b)

Here, 0 <c � 1. In (3.1a) the constraint represents the condition for a fixed amount of
basic-flow modification. Using the Lagrange multiplier, the optimal δU in stabilizing
the absolute instability (δω0i < 0) is obtained as

δU (y) = −c
K0i

(y)√∫
Ω

K2
0i
(y) dy

. (3.2)

4. Parallel model wake
In this section, we discuss the sensitivity of eigenvalues of the Orr–Sommerfeld

operator for a parallel model wake at low Reynolds number using the formulae
derived in the previous sections.

Following Monkewitz (1988), the profile of the basic flow as a parallel model wake
is given as

U (y) = 1 − Λ + 2ΛF (y), (4.1a)

where

Λ = (U ∗
c − U ∗

∞)/(U ∗
c + U ∗

∞), (4.1b)

F (y) = [1 + sinh2a{y sinh−1(1)}]−1. (4.1c)

Here, the superscript ∗ denotes a dimensional quantity, U ∗
c (= U ∗|y=0) is the centreline

velocity, and U ∗
∞(= U ∗|y=∞) is the free-stream velocity. The Reynolds number is

defined as Reb = Û ∗b/ν, where Û ∗(= (U ∗
c +U ∗

∞)/2) is the average basic-flow velocity, b

is the wake half-width such that U ∗|y=b = Û ∗, and ν is the kinematic viscosity. In this
study, Λ = −1.105, a = 1.34 and Reb = 12.5 are chosen following Monkewitz (1988).
The corresponding velocity profile is shown in figure 1(a). The velocity is slightly
negative for −0.377 � y � 0.377 and positive elsewhere.

The regular and adjoint Orr–Sommerfeld equations are solved using the standard
Chebyshev collocation technique (Canuto et al. 1988) with N = 100 to accurately
resolve all significant eigenvalues. The Chebyshev–Gauss–Lobatto points, −1 � ζj =
cos[(j −1)π/(N −1)] � 1 for j =1, 2, . . . , N , are mapped onto the transverse direction
−63 � y � 63 through the cotangent mapping. The resulting matrix eigenvalue
problem is solved using the subroutine zggev.f in the LAPACK library. The
absolute-instability wavenumber α0 and frequency ω0 are obtained using the cusp
map procedure described in Kupfer, Bers & Ram (1987): α0 = 0.8075 − 0.4890i and
ω0 = 0.9577 + 0.0628i. These absolute-instability wavenumber and frequency values
are in good agreement with those in Monkewitz (1988) (α0 = 0.831 − 0.505i and
ω0 = 0.990 + 0.061i). Since ω0i is positive, this parallel model wake is absolutely
unstable.

4.1. ε-pseudo-spectrum for a parallel model wake

In this section, we show that the non-normality of a Orr–Sommerfeld operator
is sufficiently moderate in parallel wake at low Reynolds number. Moderate
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Figure 1. Parallel model wake U and sensitivity function K0 (Λ = −1.105, a =1.34 and
Reb = 12.5): (a) U (y); (b) , K0r

(y); , K0i
(y).

non-normality indicates that small changes in the basic flow that stabilize the absolute-
instability frequency do not destabilize other eigenvalues by more than the original
absolute-instability frequency.

Let us first define the ε-pseudo-spectrum (or ε-pseudo-eigenvalue). The concept of ε-
pseudo-spectrum has been used to qualitatively measure the sensitivity of eigenvalues
of the Orr–Sommerfeld operator (Reddy & Henningson 1993; Trefethen et al. 1993;
Schmid & Henningson 2001). Consider a linear time-invariant system ∂ψ/∂t = Lψ .
A number z is an ε-pseudo-spectrum of L, if any of the following two conditions
is satisfied: (i) z is an eigenvalue of L + P for some random perturbation matrix P

with ‖P ‖E � ε; (ii) z satisfies ‖(zI − L)−1‖E � ε−1. Here ε > 0. In these definitions, the
norm ‖ · ‖E of the linear operator is based on the following norm for an arbitrary
square integrable function ψ in Ω:

‖ψ‖E =

[∫
Ω

(|Dψ |2 + |α|2|ψ |2) dy

]1/2

. (4.2)

From the definition (4.2), the norm of an arbitrary linear operator A is defined as

‖A‖E ≡ sup
ψ 	=0

‖Aψ‖E

‖ψ‖E

. (4.3)

These norms are called the energy norm.
In order to obtain numerical solutions of the ε-pseudo-spectrum, the Orr–

Sommerfeld operator, L = −M−1Los (see (2.1)), is discretized using the Chebyshev
collocation method with N =100 as before. For accurate evaluation of the energy
norm in (4.2), we use 3000 uniform grids in the transverse domain (y), and the ψ on
these grid points are obtained through the Chebyshev transformation of ψ previously
obtained with N =100 and its inverse. Then, the integration and differentiation of ψ

in (4.2) are performed on the uniform grids using the rectangle rule and second-order
central difference method, respectively. After obtaining ‖ψ‖E , the energy norms, ‖P ‖E

and ‖(zI − L)−1‖E , are obtained using the singular value decomposition.
Figure 2 shows the eigenspectra and ε-pseudo-spectra for the model wake shown

in figure 1(a) at Reb = 12.5 and Reb = 100. Similarly to the Poiseuille and Couette
flows, there are three types of branch, denoted by A, P and S (see figure 2a, e)
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Figure 2. Eigenspectra and ε-pseudo-spectra for the parallel model wake (Λ= −1.105
and a = 1.34) for (a–d) α = α0 ( = 0.8075 − 0.4890i) and Reb = 12.5, and (e–h)
α = α0 (= 0.9375 − 0.5797i) and Reb = 100: (a, e) eigenspectra; (b, f ) ε-pseudo-spectra based
on the resolvent norm (contour levels represent log10 ‖(zI − L)−1‖E); (c, g) ε-pseudo-spectra
based on the random perturbation of the operator (‖P ‖E = 0.1); (d, h) ε-pseudo-spectra based
on the random perturbation of the operator (‖P ‖E = 1). In (b), (d), (f ) and (h), eigenspectra
are also plotted for comparison.
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for this model wake. P and S branches form continuous spectra like the Blasius
boundary layer (see Schmid & Henningson 2001). The ε-pseudo-spectra based on the
resolvent norm (i.e. ‖(zI − L)−1‖E) (figure 2b,f ) and the random perturbation of the
operator L (figure 2c, d) and g, h) are obtained by computing the resolvent norm
and superposing eigenvalues from 50 different perturbed Orr–Sommerfeld operators
on the (ωr , ωi)-plane, respectively. In case of the ε-pseudo-spectrum based on the
resolvent norm, the regions having large ‖(zI − L)−1‖E are located at the upper
edge of branch P and the region intersected by all three branches (figure 2b, f ),
indicating that the most sensitive eigenspectra are located at these regions. Significant
modifications of eigenspectra from perturbation of the operator L also occur in
these regions (figure 2c, d and g, h), showing that two different measures of the
ε-pseudo-spectrum provide very similar results. The sensitivity of the intersection
region is similar to those for the Poiseuille and Couette flows at Re = O(103–104).
However, in Poiseuille and Couette flows, the eigenspectra are completely modified
by an operator perturbation of magnitude only O(10−4–10−5). On the other hand,
the eigenspectra for the present parallel model wake at Reb = 12.5 and Reb = 100
are almost insensitive to an operator perturbation of magnitude even O(10−1)
(figure 2c, g). For an operator perturbation of O(1), the eigenspectra are significantly
modified at the branch P and the intersection region, but these modified eigenspectra
are still stable compared to the absolute-instability frequency (figure 2d, h). Further-
more, these sensitive regions are located sufficiently far from the absolute-instability
frequency (ω0 = 0.9577+0.0628i at Reb = 12.5 and ω0 = 1.0056+0.1835i at Reb =100).

Therefore, small changes in the Orr–Sommerfeld operator do not destabilize
other eigenvalues by more than the original absolute-instability frequency. This
eigenspectrum characteristic is essentially caused by the low Reynolds number
considered here. At low Reynolds number, the Orr–Sommerfeld operator is close
to a normal operator due to the self-adjoint diffusion term, and this self-adjoint
diffusion term causes the eigenspectra of the Orr–Sommerfeld operator to be almost
insensitive to small perturbations.

4.2. Application to a parallel model wake

Now, we apply the formulae derived in § § 2 and 3 to the present parallel model wake
at low Reynolds number. With the solutions of ψ0(y), φ0(y) and α0, the sensitivity
function K0(y) is obtained from (2.3b) and is shown in figure 1(b). K0i

is positive
in the separating shear layer (0.7 � y � 1.15 and y � 1.7) and negative near the
centreline (−0.7 � y � 0.7). Note that K0i

is slightly negative for 1.15 <y < 1.7. We
also considered other Λ and a values, but the resulting K0(y) were qualitatively
similar to that shown in figure 1(b).

As described in (3.2), K0i
(y) determines the optimal δU for stabilizing the absolute

instability. For example, a decrease in the basic flow (δU < 0) in the separating shear
layer stabilizes the flow, whereas an increase in the basic flow (δU > 0) along the
centreline in the recirculating region suppresses the absolute instability.

5. Circular-cylinder wake at ReD = 48

In this section, we apply the present formulae to a circular-cylinder wake at
ReD = u∞D/ν = 48, where u∞ is the free-stream velocity and D is the cylinder diameter.
To obtain the basic flow, we solve the Navier–Stokes equations numerically on a
staggered Cartesian mesh using the immersed boundary method (Kim et al. 2001).
The computational domain is −50 � x � 70 in the streamwise direction and 0 � y � 30
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Figure 3. Distributions of the local absolute-instability frequency and sensitivity function in
the streamwise direction (circular-cylinder wake at ReD = 48): (a) ω0i

(x); (b) K0i
(y; x0). In (b),

the solid and dashed lines denote, respectively, positive and negative values (−1.8 to 0.6 in
increments of 0.2), and the thick solid line denotes the contour of U = 0.

in the transverse direction. Here, only the upper half-domain is considered and the
symmetric boundary condition (v = 0 and ∂u/∂y = 0) is imposed at y = 0, where u and
v are the velocity components in the x- and y-directions, respectively. The number
of grid points used is 641(x) × 2048(y). The large number of grid points in the
transverse direction is to capture a spectral-like accuracy of the Orr–Sommerfeld-
equation solution using the Chebyshev collocation method. For more numerical
details, refer to Kim et al. (2001). The properties of the computed basic flow such
as the recirculation length (L = 3.26D from the centre of the cylinder) and drag
coefficient of the cylinder (CD = 1.41) show good agreements with the results of
Fornberg (1980, 1985).

To calculate local absolute-instability frequencies, the same numerical methods as
in § 4 are used for solving the regular and adjoint Orr–Sommerfeld equations. The
streamwise velocity at each x-location in the wake is provided from the simulation
of the Navier–Stokes equations and the corresponding local absolute-instability
frequency ω0(x) is obtained. Figure 3(a) shows the imaginary part of the local
absolute-instability frequency in the streamwise direction. This result is in good
agreement with that of Pier (2002). Note that the flow is locally absolutely unstable
in the near wake (x � 3.39D) at ReD = 48. This region nearly coincides with the
flow-reversal region.

The sensitivity function at each x0 location, K0(y; x0), is obtained using (2.3b) and
its imaginary part is shown in figure 3(b), together with the contour of U =0. The
optimal basic-flow modification for stabilizing the absolute instability (δω0i

< 0) is
δU (y) ∝ −K0i

(y) (see (3.2)). Therefore, to stabilize the vortex shedding at ReD = 48,
one has to decrease and increase the basic flow, respectively, in the separating shear
layer and near the centreline. For example, positioning a secondary cylinder in the
separating shear layer (or at the centreline) (Strykowski & Sreenivasan 1990) results
in δU < 0 (or δU > 0) there and thus the flow becomes stabilized because K0i

> 0 (or
K0i

< 0, respectively) there. Recently, Giannetti & Luchini (2003) studied the effect
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of basic-flow modification on the linear global instability in a circular-cylinder wake
and showed that the region of separating shear layer is the most receptive to the
basic-flow modification. On the other hand, base bleed (Wood 1964; Bearman 1967;
Schumm et al. 1994) increases U there (i.e. δU > 0), and thus suppresses the absolute
instability because K0i

(y) < 0 along the centreline. Monkewitz (1988) conducted a
parametric study on the absolute instability for base bleed, in which the variation of
absolute-instability frequency was obtained by changing Λ and a in (4.1), and showed
that base bleed suppresses the absolute instability. Although the exact amounts of
basic-flow modification due to the secondary cylinder and base bleed are not evaluated
here, the present result shows a qualitative agreement with those of previous studies.
This clearly indicates that the stabilization of the global mode is closely related to
the suppression of local absolute instability.

6. Concluding remarks
The concept of absolute and convective instabilities has played an important role in

interpreting the dynamical behaviour of open shear flows (Chomaz 2005). The nature
of local instability reflecting the dynamical characteristics of basic flow is closely
associated with the global instability. In this respect, investigation of the relation
between the basic flow and absolute instability should be useful for understanding
the nature and control of open shear flows.

In the present study, we studied the effect of basic-flow modification on the absolute
instability in two-dimensional parallel wakes at low Reynolds numbers. The sensitivity
analysis of absolute instability suggested how one can modify the basic flow to
suppress or enhance the absolute instability. For example, in a two-dimensional
model wake and a circular-cylinder wake exhibiting an absolutely unstable nature, we
showed that positive and negative velocity perturbations to the basic flow, respectively,
at the centreline and separating shear layer suppress the absolute instability. We also
showed that, using the ε-pseudo-spectrum, the non-normality of the Orr–Sommerfeld
operator is sufficiently moderate for a two-dimensional parallel model wake at low
Reynolds number. Thus, other eigenvalues were not destabilized by more than the
original absolute-instability frequency.

As stated in a recent review by Chomaz (2005), the local stability analysis for linear
global mode may not be applicable when the inherent linearized operator is strongly
non-normal. However, the local stability analysis has provided a good framework for
studying the linear global mode in many open shear flows such as wakes, backward
facing steps, separation bubbles and so on. This indicates that the linearized operators
near the onset of the global mode in these open shear flows may not be strongly
non-normal, like the present wake at low Reynolds number. Chomaz (2005) also
conjectured that the wake behind a circular cylinder has this property. Therefore,
the present approach is applicable to these flows and provides a simple and useful
framework for studying the nature of absolute instability.

This work is sponsored by the Creative Research Initiatives Program through the
Korean Ministry of Science and Technology.
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study near the threshold. J. Physique Lett. 45, 483.

Min, C. & Choi, H. 1999 Suboptimal feedback control of vortex shedding at low Reynolds numbers.
J. Fluid Mech. 401, 123.

Monkewitz, P. A. 1988 The absolute and convective nature of instability in two dimensional wake
at low Reynods number. Phys. Fluids 31, 999.

Monkewitz, P. A., Huerre, P. & Chomaz, J. M. 1993 Global linear stability analysis of weakly
non-parallel shear flows. J. Fluid Mech. 251, 1.

Park, D. S., Ladd, D. M. & Hendricks, E. W. 1994 Feedback control of von Karman vortex
shedding behind a circular cylinder at low Reynods number. Phys. Fluids 6, 2390.

Park, H., Lee, D., Jeon, W.-P., Hahn, S., Kim, J., Kim, J., Choi, J. & Choi H. 2006 Drag reduction
in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive
device. J. Fluid Mech. (in press).

Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake.
J. Fluid Mech. 458, 407.

Protas, B. & Styczek, A. 2002 Optimal rotary control of the cylinder wake in the laminar regime.
Phys. Fluids 14, 2073.

Protas, B. & Wesfreid, J. E. 2002 Drag force in the open-loop control of the cylinder wake in the
laminar regime. Phys. Fluids 14, 810.

Provansal, M., Mathis M. & Boyer, L. 1987 Bénard-von Kármán instability: transient and forecd
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